If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23k^2-16k=0
a = 23; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·23·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*23}=\frac{0}{46} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*23}=\frac{32}{46} =16/23 $
| -2x+13=-15x | | C=10m+1390+1040 | | 10+2d=-6+d+9 | | 23k^2=16k | | C=98m+1225 | | 7=3-6w | | -18.3r=-8.4r+14.85 | | 14(x+12)=3(x-2)+6 | | 4(c+12)=12c+18 | | -1+9(4d-2)-6d=-1 | | 2x-8=+10-7x | | (6x*5)(2x*5)=0 | | 7w-17=5(W-1) | | 4=0.5y | | 14.3x=x+89.6 | | 4n+2+3n-11=180 | | 5(u-1)=3u-37 | | T=5n | | Y^2-5y+6y+13=0 | | (x-7)^2+7=0 | | -18.4+7.7y-18.65=17.76+14y | | 21-y/4=12 | | 1/3+2z=-5 | | 9^x-3=27 | | 7.5+6.8(x)=x+89.6 | | -17x+33=288 | | 36/(x-3)=4 | | 8+5y=-6 | | 2,886=39(p+20) | | f(-3)=-3.5 | | 3-2t=18+5t | | 4+16-18m=20+m |